
ME209 Dr. Youssef

CSUN-Mechanical Engineering Department
© 2014 Dr. George H Youssef

Introduction to VBA for Excel-Tutorial 4

In this tutorial, we will learn more ways to execute (run) the macro, learn about the most used
mathematical functions, how to build an array (something you have been waiting for) and
finally learn about some debugging tools. It is hard to believe you will write codes with errors
(so called bugs), but let’s be honest with ourselves it is more common than we can imagine.

We learned three ways thus far to execute the macro:

1) Press F5 while in VBE environment,
2) Press the Run button (red box in figure below) on the standard tool bar while in VBE

environment, and
3) Adding a Control Button from the Developer tab on the Ribbon while in the Excel

environment.

The following method is suitable for those of you that like keyboard shortcuts. To assign a
shortcut key to run a macro:

1- Click Developer/Code sub menu/ Macros

2- Excel will prompt you with Macro dialog box, Select the macro name you like to assign
shortcut to. If you have multiple macros in the workbook, make sure you select the
correct one.

3- Click Option button

ME209 Dr. Youssef

CSUN-Mechanical Engineering Department
© 2014 Dr. George H Youssef

4- Excel will prompt you with Macros Option dialog box, Insert the letter in the box beside
Ctrl+, thus to execute the macro, you press Ctrl+g

If you entered an uppercase letter, for example “G” instead of “g”, note the shortcut
combination is Ctrl+Shift+letter_you_entered. In our example, you would press Ctrl+Shift+G

Tidbit: sometimes it is desired to execute a macro from another macro, I admit this is for more
advanced users but it won’t hurt to share this with you, to do so use Call statement, such as:

ME209 Dr. Youssef

CSUN-Mechanical Engineering Department
© 2014 Dr. George H Youssef

If you execute newsub procedure, the message in test procedure will be displayed.

However, VBA has limited number of math functions there is a way to go around this limitation.
First, here a list of the few useful functions in VBA, some of which mentioned in Tutorial #2:

Function Description syntax

Abs Returns the absolute value of the same type that is passed
to it

Abs(number)

Atn Returns the arctangent of a number (in radians) Atn(number)

Cos Returns the cosine of a number (in radians) Cos(number)

Sin Returns the sine of a number (in radians) Sin(number)

Exp Returns the base of the natural logarithms e raised to a
power

Exp(number)

Log Returns the natural logarithm of a number Log(number)

Sqr Returns the square root of a number Sqr(number)

We have practiced these functions in homework and in-class exercises, but we all know that
Excel has a lot more functions (~ 340 functions) than these mentioned above. Thus, the
question can we integrate these functions into our macros? The answer is simply Yes! This is in
part due to the objectivity of the VBA. Remember, we said before that everything in MS Office
is treated as an object, therefore we can simply call any function from Excel environment to
VBA code such that:

Or simply use WorksheetFunction.function_name (i.e. WorksheetFunction.Sinh to call the
hyperbolic sine function)

Worksheet Function
call syntax

Access to all

Excel Functions

ME209 Dr. Youssef

CSUN-Mechanical Engineering Department
© 2014 Dr. George H Youssef

 Arrays
Arrays are the most used structure in engineering because variables take on multiple
values and it is of interest to study the behavior of such change. Therefore, array is a
group of variables, which could be string variables (i.e. text) or numbers (i.e. integer,
double etc.). You can declare arrays the same way you declare any variable using Dim
statement. If you know the size of the array a prior, then the Dim statement would be as
follow for 1D array:

Dim array_name(start to end) as datatype

For example: if you need to define a time array that has 100 elements, the syntax should look
like:

Dim time(1 to 100) as single or

Dim time(0 to 100) as single or

Dim time(100) as single

In the first statement, you defined an array with 100 elements, where the start index
(sometimes referred to as the lower index) is 1 and the end index (sometimes referred to as
higher index) is 100.
In the second statement, you defined an array with 101 elements, where the start index is 0
and the end index is 100.
In the third statement, you defined an array with 101 elements, where the start index is 0
and the end index is 100.

Word of advice, starting an array with 0 index is very confusing because it’s hard to keep track
of the number of elements. If you noticed Dim statements 2 and 3 show the size to be 100, but
the actual size is 101. To elevate the confusion, we will force VBA to start all arrays with 1 as the
lower index. Add the following statement following the Option Explicit statement on the top of
your code:

In this case, all statements above to declare an array are similar, the lower index = 1 and the
higher index =100 and all arrays will have only 100 elements.

A very simple example using arrays: In this example, you declare a 1x3 array, assign values from
the worksheet to each element and then output the successive sum. Note the Option Base 1
statement.

1

2

3

ME209 Dr. Youssef

CSUN-Mechanical Engineering Department
© 2014 Dr. George H Youssef

Consider another example. In this example, declare the variable “a” as variant, then assign the
values from a range on the UI to that variable, such as shown below. I would like you to note
two points, first how you assign the values using the Range Statement and second, how to
access the item after casting.

Note: whether you declare the variable as variant (i.e. Dim a As Variant) or just declare the
variable (i.e. Dim a) the end result is the same.

 Complex numbers:
In the homework, we solved the quadratic equation when the roots expected to be real.
However, we know that it not always true. Sometimes, the roots are complex
conjugates based on the value of the discriminant. This is considered a big problem; VBA
does not have Complex data-type! We need to define our complex number data-type
before we can perform any complex number based algebra. Here is the code to define a
new complex data-type:

An example to add two complex numbers is presented next. However, it is a trivial and brief
example, it illustrate the structure and usage of complex number data-type. We will revisit this
example again, once we learn conditional statements.

ME209 Dr. Youssef

CSUN-Mechanical Engineering Department
© 2014 Dr. George H Youssef

 Debugging

As you have seen thus far, most of the time when you execute a macro, VBA gets upset
and bombard you with errors. These errors called bugs and the task of removing these
bugs is not an easy one. It requires patience, skills, vigilance, and of course luck. VBA
equipped with some good debugging tools, which can be accessed from Debug menu in
VBE environment (pretty relevant name).

First debug tool is “Run To Cursor” or Ctrl+F8, the code will run to the location of the cursor
and stop executing the rest including the line where it is point at. This is very handy tool, you
can review the code section by section and execute up the section where you finished
reviewing. A variable that has been defined or calculated will display its value if you hover the
cursor over the variable. If the variable has not yet been calculated, the value will be labeled
Empty or Null or 0.

Note the cursor was placed on the
beginning of this line

Note: it displayed
the value of a

ME209 Dr. Youssef

CSUN-Mechanical Engineering Department
© 2014 Dr. George H Youssef

Second debugging tool is “Toggle Breakpoint”, which work similarly to the first tool. The
advantage is you can set multiple breakpoints in the code. Think of breakpoint as Traffic Light,
the code will run till the breakpoint and wait for you to give it the green to continue. To add a
breakpoint, click on the gray bar beside the line you would like to insert the breakpoint. To

continue execution after the breakpoint (1) press Run on the tool bar, (2) select “Continue”
from Run Menu or (3) press F5.

The last tool that we want to learn is “Add Watch,” it lets you select variables in advance whose
current value at a point in the program will be displayed. You can access the Add Watch from
Debug/Add Watch. Or select the variable you want to observe, right click and select Add Watch.

Note: c=0 because this
line is not evaluated yet.

ME209 Dr. Youssef

CSUN-Mechanical Engineering Department
© 2014 Dr. George H Youssef

A quick way to add a variable to Add Watch list is Quick Watch from Debug menu. Excel will
then prompt you with a dialog box.

Method 1:

Method 2:

Once you click ok, notice that Watches window is opened and a list of variables are added.

